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synopsis 

The extent of mesophase, which constitutes the boundary layer between the filler and the 
matrix of a composite, was defined in this paper along the whole viscoelastic spectrum of the 
polymeric substance constituting the matrix. The already established two-term unfolding 
was based on thermodynamic measurements of the heat capacity jumps a t  the glass transition 
regions of the filled and unfilled substances in order to define the extent of mesophase. In this 
paper we dispense ourselves with these delicate measurements, based on Lipatov’s theory, and we 
use values taken from the storage and loss compliances of the composite and its constituents, 
along the whole viscoelastic spectrum of the composite. I t  was shown that the extent of the 
mesophase, necessary to sustain the shearing loading between phases, appearing a t  the glass 
transition zone, where the loss-compliances presented their characteristic peaks of resonance, 
remained constant and almost independent of the respective values of mechanical properties a t  
this critical region. I t  was shown that any set of values of the mechanical characteristic 
quantities, defining the composite and its constituents along the whole viscoelastic spectrum, is 
sufficient to evaluate the extent of the mesophase, and this boundary layer undergoes only 
negligible variations. Experimental evidence with typical E-glass polystyrene and other par- 
ticulates, at various volume fractions of the filler, yielded a satisfactory coincidence with the 
results derived by using Lipatov’s theory and a constancy of the mesophase thickness along the 
whole temperature range. 

INTRODUCTION 

There are a number of theories which formulate the behavior of the elastic 
modulus of filled polymer systems. However, a satisfactory examination of the 
strength laws of rigid-particulate composites requires some further considera- 
tion. 

Analytic solutions for various mathematical models are based on variational 
principles of mechanics and yield upper and lower bounds of approximations 
for the effective moduli of the composites. These solutions are valid only for 
rather low filler contents, since they ignore, for reasons of efficiency, all 
mechanical interactions between neighboring fillers, as well as physicochemi- 
cal influences on either phase from the other one. A great number of empirical 
and semiempirical expressions for the effective moduli exist, expressing some 
kind of law of mixtures, or trying to match theoretical expressions to experi- 
mental data by appropriately defining the existing constants in these expres- 
sions. In all these models perfect adhesion is assumed holding between 
phases. 4- 
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Another type of model is referred to multiphase particulates. It assumes 
three consecutive phases as concentric spheres and the external one is ex- 
tended to infinity. The spherical filler is surrounded by a concentric spherical 
layer having the properties of the matrix, which in turn is embedded in the 
infinite medium with the properties of the composite. The model was intro- 
duced by Kerner.' Van der Poel' used a model similar to the Kerner model, 
but in different boundary conditions. Finally, Maurer, in his dissertation, used 
extensively the Van der Poel model and derived interesting r e s ~ l t s . ~  

Although the Kerner and Van der Poel models may be adapted for the 
study of the mesophase phenomena developed at the boundary layers be- 
tween phases, only Lipatov'O considered extensively the phenomenon of crea- 
tion of the mesophase between main phases in particulates and gave relations 
interconnecting the heat-capacity jumps at  the glass transition temperatures 
of the matrix polymer and the composites with the thickness of this boundary 
layer: 

( y)3- 9 

where Ar is the thickness of the mesophase, rf is the radius of the filler 
particles, ur is the volume fraction of the filler and A is a weighing factor 
defining the influence of the state of mesophase to its extent and its depen- 
dence on the filler volume fraction. This factor is given by the empirical 
relationship 

where AC! and AC: are the jumps of the heat capacity of the filled composite 
and the unfilled polymer, respectively, for particulate composites. 

Moreover, the extent of mesophase may be calculated by dynamic measure- 
ments of the storage moduli and the loss factors at the vicinity of Tg's of the 
matrix and the composites." 

In all these models the boundaries of the phases were idealized as smooth 
surfaces described by exact mathematical expressions. In reality, around an 
inclusion a complex physical state develops by the creation of a boundary 
layer whose thickness and properties depend on the eventual imperfect 
bonding, on permanent stresses, due to shrinkage of the polymer phases 
during the curing period and the change of the thermal conditions there, on 
the high stress gradients and stress singularities, due to complicated geometry 
of the interfaces, on the voids, on impurities and microcracks, appearing at the 
vicinity of these boundaries, and, finally and most important, on the chem- 
ically adsorbed parts of the molecules of the one phase coming in contact with 
the other phase. 
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Some attempts have been made up to now to derive, in a simplified manner, 
the expression for the elastic modulus E ,  of a particulate composite by taking 
into consideration the existence of the mesophase. One of these is the expres- 
sion given by Lipatov,12 based on a simple model given by Sagalaev and 
Simonov-Emeljanov.’3 In this model i t  was assumed that when the composite 
attains its critical filler content, the matrix phase of the Kerner model is 
thinned out and becomes the mesophase, whereas the uniform composite 
material outside it takes the properties of the matrix. In this case the 
compliance of the composite is expressed by the sum of compliances of the 
constituent phases, multiplied by their respective volume contents. 

Another model initiating the mesophase layer was introduced by Spathis, 
Sideridis, and Theocaris.14 Here the elastic modulus of the composite is 
expressed as the sum of the filler, mesophase, and matrix moduli, multiplied 
with their respective volume fractions. The term expressing the contribution 
of the filler modulus was further multiplied by a corrective factor K ,  depend- 
ing on the quality of adhesion. This factor was derived from the experimental 
determination of the mesophase volume fraction u, and its modulus, by 
measuring the E ,  values for different volume contents, which suffice for the 
evaluation of the factor K .  Several tests were needed at different u,’s and 
different temperature levels to find the most appropriate average value of K .  
This model gave a lower bound for the composite modulus E,. 

Similar models considering the mesophase layer are the Kerner-Kerner 
model,17 where the classical Kerner model was used twice, once for the 
filler-mesophase material, and for the second time for the internal heteroge- 
neous material and the matrix, and the model introduced by Kudykina and 
Pervak,15 which expresses the shear modulus G, of the particulate. 

The unfolding model, introduced by Theocaris,1i2 relates the composite 
compliance to the compliances of the matrix, mesophase, and filler. I t  is based 
on principles of physics and mechanics between phases and it combines, in a 
harmonious way, the properties of the main phases together with the experi- 
mentally defined properties of the composite. Moreover, the model presents a 
high degree of flexibility and may be adapted easily to real situations. 
As a byproduct of the unfolding models the thickness of the mesophase was 

calculated by using continuity considerations between phases16 and without 
making recourse to Lipatov’s fonnula.l0 Using as an additional condition the 
continuity of tangents at the mesophase-matrix interface, it  was possible to 
evaluate the extent of mesophase and its mechanical properties. 

Moreover, in Ref. 11 a preliminary study was undertaken where the 
boundary layer between reinforcements and matrices in fibrous composites 
was studied by using dynamic measurements of the composite and its matrix. 
It was shown there that the values of storage and loss moduli and their 
relative characteristics in the viscoelastic spectrum are sufficient for com- 
pletely determining the mesophase. 

In the present paper the thickness of mesophase was evaluated by using the 
composite, matrix, and filler compliances measured a t  various temperatures of 
the viscoelastic spectrum without using Lipatov’s theory along the whole 
viscoelastic spectrum of the composite and its constituents. The results proved 
that the thickness of this boundary layer is constant along the whole visco- 
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elastic spectrum. Furthermore, the adhesion coefficient between phases can be 
determined which characterizes the adhesion quality of the phases. 

THE UNFOLDING MODEL FOR PARTICULATES 

The model, which has been introduced in Ref. 1, has a representative 
volume element (RVE), consisting of three concentric spheres. Each one of 
them represents the filler, the mesophase, and the matrix, respectively (radii 
r f ,  r and r,). It  is obvious that, for the RVE of a particulate composite, the 
following relations hold: 

The appropriate boundary cnnditions between the internal sphere and any 
numher of spherical 1aye.s vmounding it in the RVE must assure a continu- 
ity of radial stresses and displacements. Assuming these conditions, a relation 
interconnecting the moduli of the phases and the composite may be estab- 
lished. For a hydrostatic pressure P, applied on the outer boundary of the 
matrix sphere, i t  can be found, by applying the energy balance principle 
between phases, that the following relation holds for spherical particulates': 

3(1 - 2 ~ , )  3(1 - 2vf)ur 
- - 

Ec Er 

where 

In these relations A,, and A,, are the hydrosratic pressure ratios at the 
filler-mesophase and mesophase-matrix boundaries, respectively, because of 
the applied hydrostatic pressure P,. The expressions for the A,, and A,, are 
given by' 
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and 

2um(1 - 2 v m )  Emu, ( 1  + v i )  A .  = I -  -~ 
' ( 1  - Vm) 3Ei ( 1  - v,) am (7) 

Equation (4) yields the elastic modulus Ec of the composite in terms of the 

Since the mesophase is derived from the matrix material, it  is reasonable to 
moduli and Poisson's ratios of the phases. 

accept that 

vi = vm 

Since, until now, the unfolding model has not been extended to the transi- 
tion phenomena of Poisson's ratio in the mesophase, this quantity, vc, may be 
derived by using the following approximate relation, which, at the moment, 
yields satisfactory results": 

Indeed, the mesophase material is characterized by its varying chemical and 
mechanical properties. This happens mainly because of the different packing 
densities of the polymer macromolecules near the interface with the rein- 
forcement, from those of the polymers lying at remote regions from the 
solid-polymer interaction zone. 

Then, in order to describe this degradation of the mechanical and other 
physical properties of the mesophase material, from those of the filler to those 
of the polymeric matrix, a model was proposed in Refs. 1 and 2.  According to 
this model, the complicated physicochemical phenomena occurring in the 
mesophase zone were simulated by a macromechanical model, which assumes 
that the elastic modulus of the mesophase Ei( r )  varies with the polar distance 
according to an inverse power law. This law was established on physical 
grounds; based on similar laws of variations of stresses near singularities in 
homogeneous and isotropic elastic stress fields.2 The elastic modulus of the 
mesophase is then unfolding between two limits, that is, from the El to Em 
modulus. 

According to Ref. 2,  the E i ( r )  modulus may be expressed by (two-term 
version) 

For r = r,, eq. (10) yields E i ( r )  = El and, for r = ri, E i ( r )  = Em. 
It should be emphasized that the exponent 2 n  in relation (10) is not a 

material characteristic constant, but its magnitude is only interpreted as good 
or bad adhesion because it is intimately related to the extent of the mesophase. 
An increase of 2n makes the slope of the E i ( r )  curve more steep, and this 
influences the thickness of the mesophase. 
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Then, the whole modeling tries to describe qualitatively the situation on the 
mesophase zone, and only the thickness of this layer has to be considered as a 
dimension having a physical meaning. 

THE THICKNESS OF THE MESOPHASE AND THE 
EVALUATION-OF THE MESOPHASE PARAMETER 

It is valid for the mesophase layer that 

which leads to 

x ( l  + B-ll3 + r 2 / 3  - 3B-1) (12) 

and after a truncated Taylor series expansion we find out that 

where terms of higher power of B have not been considered, as having very 
small contribution, and Dm = l / E m  the complex dynamic compliance of 
matrix. 

Given that 0, = l /E , ,  eq. (4) transforms to 

+-[ 30: U f ( l  2B + V") ( 1 - ~ ) 2 + ( l - 2 V m )  

urn 

48uf Ef 
D,*2 + 12D,*Uf 

- [ (2n/3 - 1)  

I x ( l  - (B-113 + B-2'3 - 3l3-1)) 

where 
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In  these relations the filler was considered as purely elastic, as it is the case 
with most composites. Separating real from imaginary parts of eq. (14), we 
obtain: 

2 

4 8 ~ f  23, ( 02 - DL2 ) 
- [ (2n/3 - 1) 

1 +12DA~f(1 - B-’l3 - B-2/3 + 3B-’) 

1 9619 Ef DAD; 
(2n/3 - 1) 

+ 12D;~f(1 - B-’l3 - B-2/3 + 3B-’) 

On the other hand and using the model of ref. 16, we can derive an obvious 
boundary condition holding at the interface between mesophase and matrix. 
This condition of continuity of tangents of the E,(r,) and Ern moduli is given 
bY 

which yields after some algebra that 

Combinations of the eqs. (16), (17), and (19) by two provide obviously three 
systems, each one of two equations with the two unknown quantities 2n and 
r,. So it is possible to determine these unknowns 2n and r,, either from the 
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experimental values of the dynamic moduli of the composite and the matrix or 
from one dynamic equation (16) or (17) and the boundary condition (19). 

In this way we dispose three different systems of equations, all of them 
based on mechanical properties of the composite and its constituents, as well 
as on the continuity of tangents of these moduli along the interface r = r,, 
and these three systems may yield independently the values of the mesophase 
thickness Ar, = (r,  - r i )  and the mesophase parameter 2n.‘ Thus, not only 
reliable results, based on dynamic mechanical tests of the composite and its 
constituents, are expectable, but also these results may be mutually checked 
along the whole viscoelastic spectrum of the composite. 

However, the system of equations (17) and (19) consisting of the loss 
modulus vs. temperature equation and the continuity of tangents at the r, 
interface is obviously less reliable and its results play only a secondary role for 
checking the values of 2n and r,. 

RESULTS AND DISCUSSION 

In order to check the validity of the theory developed previously, experi- 
mental values of the G, composite, the Gi filler, and the Gm matrix shear 
moduli of three typical particulate composites along the whole temperature 
spectrum were used? These particulates were the following: 

(i) A E-glass-polystyrene composite with u, = 10,20, and 30% and Poisson’s 
ratio of the matrix varying between 0.40 and 0.44. 

(ii) A E-glass-polyethylene composite with uf = 12, 20, and 28% and Pois- 
son’s ratio of the matrix approximately equal to vm = 0.40. 

(iii) A E-glass-polypropylene composite with uf = 10, 20, and 30% and 
Poisson’s ratio of the matrix approximately equal to v,,, = 0.40. 

The elastic modulus and the Poisson ratio of the E-glass were Ei = 7 X 1O’O 
NmP2 and vf = 0.25, respectively. 

TABLE I 
The Values of the Characteristic Parameters of E-Glass-Polystyrene Particulates 

for Various Temperatures for Filler-Volume Fracti0ns.q = 10,20,30%, Respectively 

V f  = 10% V f  = 20% ui = 30% 

Eqs. (A, B) Eqs. (A,C) Eqs. (A,B) Eqs. (A,C) Eqs. (A, B) Eqs. (A,C) 

TP rJr, 2n r,/rf 2n r& 2n rJri 2n r,/q 2n rJrf 2n 

50 1.012 
60 1.012 
70 1.012 
80 1.013 
90 1.013 
100 1.013 
110 1.013 
120 1.013 
130 1.014 
140 1.014 
150 1.014 

207 
210 
212 
211 
220 
282 
303 
304 
304 
304 
304 

1.017 
1.017 
1.017 
1.017 
1.018 
1.019 
1.020 
1.020 
1.020 
1.022 
1.022 

421 
423 
426 
432 
419 
520 
703 
782 
823 
801 
821 

1.037 
1.037 
1.037 
1.038 
1.040 
1.033 
1.034 
1.034 
1.035 
1.036 
1.036 

57 1.042 
59 1.042 
58 1.042 
57 1.042 
56 1.043 
82 1.043 
82 1.043 
82 1.043 
82 1.044 
82 1.044 
82 1.044 

176 
178 
179 
181 
181 
238 
339 
377 
387 
396 
406 

1.058 
1.058 
1.058 
1.058 
1.059 
1.061 
1.062 
1.063 
1.065 
1.068 
1.068 

31 1.065 
31 1.065 
31 1.065 
72 1.065 
120 1.066 
132 1.068 
160 1.070 
160 1.071 
160 1.071 
160 1.072 
160 1.072 

114 
115 
116 
117 
118 
150 
211 
231 
243 
245 
251 - 
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TABLE I1 
The Values of the Characteristic Parameters of E-Glass-Polyethylene Particulates 

for Various Temperatures for Filler-Volume Fractions vl = 12,20,28%, Respectively 
-~ ~ 

Vf = 12% 
~~ 

Vf = 20% 

TP 

- 150 
- 140 
- 130 
- 120 
- 110 
- 100 
- 90 
- 80 

Eqs. (A, B) 
ri/q 2 n  

1.017 118 
1.018 116 
1.018 116 
1.019 114 
1.020 114 
1.020 118 
1.020 124 
1.020 129 

ri/rl 2 n 

1.023 178 
1.024 178 
1.025 172 
1.026 171 
1.026 180 
1.029 164 
1.030 160 
1.030 162 

Eqs. (A, B) 

r*/r/ 2 n  

1.045 40 
1.047 42 
1.049 35 
1.050 35 
1.054 34 
1.055 33 
1.055 34 
1.056 33 

r*/q 2n 

1.050 80 
1.055 77 
1.055 78 
1.056 79 
1.059 79 
1.059 81 
1.061 80 
1.061 81 

Eqs. (A, B) Eqs. (A, C) 
rJrI 2 n rJrl 2 n 

1.080 
1.082 
1.082 
1.083 
1.086 
1.086 
1.087 
1.087 

16 1.087 47 
16 1.089 48 
16 1.091 48 
16 1.091 50 
16 1.091 52 
17 1.092 65 
17 1.093 53 
18 1.094 53 

TABLE111 
The VaIues of the Characteristic Parameters of E-Glass-Polypropylene Particulates 
for Various Temperatures for Filler-Volume Fractions vI = 10,20,30%, Respectively 

- 40 
- 30 
- 20 
- 10 

0 
10 
20 
30 

U f  = 10% v, = 20% 

ri/rl 2 n  

1.018 141 
1.004 106 
1.014 100 
1.008 103 
1.015 101 
1.024 114 
1.016 100 
1.025 118 

ri/q 2n 

1.021 208 
1.008 559 
1.016 284 
1.011 437 
1.019 268 
1.030 188 
1.020 285 
1.030 203 

Eqs. (A, B) Eqs. (A, C) 
ri/rl 2 n  ri /q  2 n  

30% 

ri /q  2 n  ri/q 2n 
~ ~ ~~ 

1.052 34 1.055 83 
1.049 59 1.055 84 
1.054 34 1.057 82 
1.056 33 1.061 82 
1.061 30 1.063 84 
1.047 45 1.054 105 
1.047 46 1.053 112 
1.048 47 1.054 114 

~ 

1.085 16 
1.086 16 
1.086 15 
1.088 17 
1.091 15 
1.092 16 
1.093 16 
1.093 17 

~~ 

1.091 51 
1.093 50 
1.093 51 
1.094 53 
1.095 56 
1.098 59 
1.099 61 
1.100 63 

Moreover, the following relations for the complex moduli and compliances 
as well as for their components were used: 

G* = E*/2(1 + v*) (20) 

D‘ = E’/( E’2 + E ” 2 )  (21) 

Using as input data in either of the systems developed in this paper, that is 
the sets of equations (16), (17) (named as A,B, for brevity) and (16), (19) 
(named A, C) have been solved numerically giving the respective values for r, 
and 2n. 

As can be seen from Tables 1-111, the values of the ratio rJrr are stable and 
independent of the temperature along the whole temperature spectrum for 
any fixed value of the filler-volume content for each particulate. Moreover, an 
increase in the filler-volume content ur leads to an increase of ri. If can be 
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-1.09 

noticed that the values of ri given by the set of equations (A,B) are a little 
smaller than the values given by the system (A, C). 
Figures 1-3 show the variation of ratio rJrf vs. temperature for all three 

particulate composites for which measurements of dynamic moduli are avail- 
able. 

The exponent 2n is called the mesophase parameter and constitutes a 
means for defining the adhesion between the main phases of the composite. 
Since adhesion between solid phases is a complicated phenomenon, any model 
characterizing this quantity should take into consideration this parameter. An 
increase of the filler volume content u, reduces 2n since it extends the 
mesophase layer due to the interaction of the neighbor fillers. Since simulta- 
neously the urn content is decreased, the percentage reinforcement of the 
matrix is significantly increased. 

The extent of mesophases as shown in Figures 1-3 when the layers have 
been derived from dynamic mechanical tests, was almost the same as the 
extent expected by applying Lipatov's theory and calorimetric measurements 
in DSC. This extent was of the order of Ari = O.Olr, up to O.lOrf approxi- 
mately. 

It is therefore a clear indication, since the differences in the extent of 
mesophases as defined by either method are minimal, that both types of 
measurements of the mesophase yield correct and reliable results. Then this 



EXTENT OF MESOPHASE IN PARTICULATES 6277 
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.20 
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1.09 
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-150 -110 -70 
T ( O C )  

Fig. 2. The variations of the ratio (rJr,), G:, and Gf' vs. their respective temperatures for 
various filler (u, ) volume fractions for E-glass-polyethylene particulates. 

coincidence constitutes also a solid proof that the evaluation of the extent of 
mesophase by Lipatov's theory is a sound one and in conformity with the 
results of dynamic mechanical measurements. Therefore, any skepticism about 
the use either of the empirical formula of Lipatov or the results based on 
measurements at Tg is totally groundless. 

Finally, the fact that all over the temperature spectrum the extent of 
mesophase (defined by ri) remains essentially constant indicates the sound- 
ness of the method. 

CONCLUSIONS 

An analytical method for evaluating the thickness of the mesophase in 
particulate composites was established in this paper, which was based exclu- 
sively on data taken from mechanical tests. Up to now the thickness of this 
layer was evaluated only experimentally by means of the heat-capacity jumps 
of samples in DSC tests applying the method developed by Lipatov.'O Accord- 
ing to this method, calorimetric measurements of the existing jumps in heat 
capacity, ACp, at the glass-transition temperatures, Tg's, of the polymeric 
composite and the matrix were sufficient to determine by an empirical formula 
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Fig. 3. The variations of the ratio (ri /r ,) ,  Gf, and G: vs. their respective temperatures for 
various filler ( ur ) volume fractions for E-glass-polypropylene particulates. 

the extent of mesophase. The reason that this measurement was made in Tg is 
that at this temperature there is a strong manifestation of the mobility of the 
segments of the polymer chains and the adsorption and adhesion interaction 
is more pronounced there than at any other temperature level. 

Then, this procedure presents two main weaknesses: (i) The definition of 
the thickness of the mesophase at the glass transition temperature of the 
composite may yield excessive values for this thickness and (ii) there is no 
physical explanation about the validity of the arbitrary empirical relationship 
introduced by Lipatov,lo in determining the factor X from the heat capacity 
jumps, from which the thickness r, of the mesophase is evaluated. 

Another further disadvantage of this method is the difficulty with which 
ACp values can be measured by small samples convenient for the differential 
scanning calorimeter. Finally, there is always large discrepancies in the defini- 
tion of Tg of polymers by mechanical and thermodynamic tests. This dis- 
crepancy influences also considerably the absolute values of the quantities 
yielding the thickness ri. 

On the other hand, the method introduced in this paper gives the values of 
2 n  and ri based only on the mechanical properties of the composite and its 
constituents. Therefore, any set of values of the mechanical characteristic 
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quantities which is sufficient to evaluate the thickness of the mesophase based 
on mechanical measurements is always preferable.18 

By using measurements of the dynamic storage and loss compliances of the 
composite and its constituents, as well as the boundary condition at the 
interface between mesophase and matrix of the continuity of tangents of their 
moduli we could establish three combinations of two-equation systems which 
yielded the values of the mesophase parameter 2n and the thickness of 
mesophase Ari = (ri - r,). It was shown that the results derived from any one 
of the systems were reliable and conformal to each other and they were in 
good agreement with the expected results, derived from Lipatov’s theory. 
Moreover, and most important, it was established that these quantities 
remained constant along the whole viscoelastic spectrum of the composite. 

This constancy and coincidence of the results from the mechanical and 
thermodynamic measurements constitutes a further strong proof of their 
validity. 
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